

Edition 1.0 2025-02

TECHNICAL REPORT

Communication networks and systems for power utility automation – Part 90-21: Travelling Wave Fault Location

INTERNATIONAL ELECTROTECHNICAL COMMISSION

ICS 33.200

ISBN 978-2-8327-0163-8

Warning! Make sure that you obtained this publication from an authorized distributor.

CONTENTS

FC	DREWO	RD	5			
IN	INTRODUCTION					
1	Scop	е	8			
	1.1	Scope of work	8			
	1.2	Published versions of the standard and related namespace names				
	1.3	Namespace name and version				
	1.4	Published versions of the standard and related namespace names				
	1.5	Code Component distribution	9			
2	Norm	native references	10			
3	Term	s and definitions	10			
4	Tvpe	s of travelling wave fault location	10			
5		irements and use cases				
Ŭ	5.1	General				
	5.2	Use case 1: Single-ended fault location (Type A)				
	5.2.1					
	5.2.2					
	0.2.2	modes at different speeds	18			
	5.3	Use case 2: Double-ended fault location (Type D) through communications				
		between two devices				
	5.3.1	•				
	5.3.2	5				
	5.3.3					
	5.3.4					
	5.3.5	5	29			
	5.4	Use case 3: Double-ended fault location (Type D) through communications with a master station	29			
	5.4.1					
	5.4.2					
	5.4.3	5				
	5.4.4					
	5.4.5					
	5.5	Use case 4: Wide area fault location (Type W)				
	5.5.1					
	5.5.2	Diagram of the use case	37			
	5.5.3	Technical details	39			
	5.5.4	Step by step analysis of the use case	40			
	5.5.5	Information exchanged	43			
	5.6	Use case 5: Pulse radar echo method (Type C and Type FMCW)	43			
	5.6.1	Description of the use case	43			
	5.6.2	Diagram of the use case	45			
	5.6.3	Technical details	47			
	5.6.4	Step by step analysis of the use case	48			
	5.6.5	5	50			
	5.7	Use case 6: Integration with other fault location and disturbance recording	50			
	5.7.1	functions in a substation				
	5.7.1	•				
	J.1.Z	มานฐานแก่ บา แกะ นอะ เนอะ				

5.7.3 Technical details	52
5.7.4 Step by step analysis of the use case	53
5.7.5 Information exchanged	55
5.8 Use case 7: Testing and calibration	55
5.8.1 Use case 7a: Wave velocity calibration	55
5.8.2 Use case 7b: Simulation testing by remote commands	60
5.8.3 Use case 7c: Calibration for the pulse radar echo method	64
5.9 Use case 8: Fault location for hybrid lines	68
6 Information models	69
6.1.1 Mapping of the requirements of use case 1	69
6.1.2 Mapping of the requirements of use case 2	70
6.1.3 Mapping of the requirements of use case 3	
6.1.4 Mapping of the requirements of use case 4	72
6.1.5 Mapping of the requirements of use case 5	73
6.1.6 Mapping of the requirements of use case 6	74
6.1.7 Mapping of the requirements of use case 7a	75
6.1.8 Mapping of the requirements of use case 7b	76
6.1.9 Mapping of the requirements of use case 7c	77
7 Logical node classes and data objects modelling	78
7.1 General	78
7.2 Abbreviated terms used in data object names	78
7.3 Logical node classes	78
7.3.1 General	78
7.3.2 Classes list	79
7.3.3 Logical nodes for protection related functions of 90-21 (LNGroupR)	79
7.3.4 Logical nodes for further power system equipment of 90-21 (LNGroupZ)	86
7.4 Data object name semantics	
8 System configuration	92
8.1 General	92
8.2 Double-circuit line	92
8.3 Topology for single line with aerial mode and zero mode	94
Annex A (normative) Conditions for element presence	95
Annex B (informative) Explanation of percentage full scale	97
Bibliography	98
Figure 1 – Wide-area travelling wave fault location system	36
Figure 2 – Class diagram LogicalNodes_90_21:LogicalNodes_90_21	
Figure 3 – Class diagram LNGroupR::LNGroupRext	
Figure 4 – Class diagram LNGroupZ:LNGroupZext	80
Table 1 – Published versions of the namespace	8
Table 2 – Attributes of (Tr)IEC 61850-90-21:2022A namespace	
Table 3 – Single-ended fault location use case requirement mapping over LNs	70
Table 4 – Double-ended fault location through communications between two devices use case requirement mapping over LNs	71
Table 5 – Double-ended fault location through master station communications use case requirement mapping over LNs	71

Table 6 – Wide Area fault location use case requirement mapping over LNs	72
Table 7 – Pulse radar echo method use case requirement mapping over LNs	73
Table 8 – Integration with other equipment use case requirement mapping over LNs	74
Table 9 – Line calibration use case requirement mapping over LNs	75
Table 10 – Testing by remote commands use case requirement mapping over LNs	76
Table 11 – Calibration for the pulse radar echo method – use case requirement mapping over LNs	77
Table 12 – Normative abbreviations for data object names	78
Table 13 – List of classes defined in LogicalNodes_90_21 package	79
Table 14 – List of classes defined in LNGroupR package	80
Table 15 – Data objects of RTWD	81
Table 16 – Data objects of RTWI	83
Table 17 – Data objects of RTWL	84
Table 18 – List of classes defined in LNGroupZ package	86
Table 19 – Data objects of ZCABExt	87
Table 20 – Data objects of ZLINExt	89
Table 21 – Attributes defined on classes of LogicalNodes_90_21 package	91
Table A.1 – Conditions for presence of elements within a context	95

INTERNATIONAL ELECTROTECHNICAL COMMISSION

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 90-21: Travelling Wave Fault Location

FOREWORD

- 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as "IEC Publication(s)"). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations.
- The formal decisions or agreements of IEC on technical matters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees.
- 3) IEC Publications have the form of recommendations for international use and are accepted by IEC National Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user.
- 4) In order to promote international uniformity, IEC National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter.
- 5) IEC itself does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies.
- 6) All users should ensure that they have the latest edition of this publication.
- 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications.
- 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced publications is indispensable for the correct application of this publication.
- 9) IEC draws attention to the possibility that the implementation of this document may involve the use of (a) patent(s). IEC takes no position concerning the evidence, validity or applicability of any claimed patent rights in respect thereof. As of the date of publication of this document, IEC had not received notice of (a) patent(s), which may be required to implement this document. However, implementers are cautioned that this may not represent the latest information, which may be obtained from the patent database available at https://patents.iec.ch. IEC shall not be held responsible for identifying any or all such patent rights.

IEC TR 61850-90-21 has been prepared by IEC technical committee 57: Power systems management and associated information exchange. It is a Technical Report.

The text of this Technical Report is based on the following documents:

Draft	Report on voting
57/2718A/DTR	57/2738/RVDTR

Full information on the voting for its approval can be found in the report on voting indicated in the above table.

The language used for the development of this Technical Report is English.

This document was drafted in accordance with ISO/IEC Directives, Part 2, and developed in accordance with ISO/IEC Directives, Part 1 and ISO/IEC Directives, IEC Supplement, available at www.iec.ch/members_experts/refdocs. The main document types developed by IEC are described in greater detail at www.iec.ch/publications.

A list of all parts in the IEC 61850 series, published under the general title *Communication networks and security systems for power utility automation*, can be found on the IEC website.

The committee has decided that the contents of this document will remain unchanged until the stability date indicated on the IEC website under webstore.iec.ch in the data related to the specific document. At this date, the document will be

- reconfirmed,
- withdrawn, or
- revised.

INTRODUCTION

The travelling wave technique for locating faults in transmission, distribution and cable network system has been maturing in recent years due to the advancement in technology. The technique is potentially more accurate and has a much wider application scope when compared with the traditional impedance-based method. However, the technique and its associated information exchange have not yet been fully modelled in IEC 61850. There is a need to do this so that the equipment can be integrated with other IEC 61850 compliant equipment, both in the substation level and in the network level.

COMMUNICATION NETWORKS AND SYSTEMS FOR POWER UTILITY AUTOMATION –

Part 90-21: Travelling Wave Fault Location

1 Scope

1.1 Scope of work

This part of IEC 61850, which is a Technical Report, aims to provide background information, use cases, data models and guidance on the application of such a technique.

This document will

- 1) describe the principles of fault location based on travelling waves aided by communications;
- 2) specify use cases for this method under the following application scenarios:
 - a) Single-ended fault location,
 - b) Double-ended fault location through communications between two devices,
 - c) Double-ended fault location with communications to a master station,
 - d) Wide area fault location applications,
 - e) Pulse radar echo method,
 - f) Substation integration with other fault location and disturbance recording functions,
 - g) Testing and calibration;
- 3) describe the information model for each use case;
- 4) give guidance on scheme configuration.

1.2 Published versions of the standard and related namespace names

The table below provides a reference between all published editions, amendments or corrigenda of this document and the full name of the namespace.

Table	1 –	Published	versions	of	the	namespace
-------	-----	-----------	----------	----	-----	-----------

Edition	Publication date	Webstore	Namespace
Edition 1.0	2024-10	IEC 61850-90-21:2024	(Tr)IEC 61850-90-21:2022A2

1.3 Namespace name and version

The parameters which identify this new release of this namespace are as follows:

1.4 Published versions of the standard and related namespace names

shows all attributes of (Tr)IEC 61850-90-21:2022A namespace.

Attribute	Content			
Namespace nameplate				
Namespace Identifier	(Tr)IEC 61850-90-21			
Version	2022			
Revision	А			
Release	2			
Full Namespace Name	(Tr)IEC 61850-90-21:2022A2			
Full Code Component Name	IEC_TR_61850-90-21.NSD.2022A2.Full			
Light Code Component Name	IEC_TR_61850-90-21.NSD.2022A2.Light			
Namespace Type	transitional			
Namespace dependencies				
extends	IEC 61850-7-4:2007B version:2007 revision:B			
Namespace transitional status				
Future handling of namespace content	The name space (Tr)IEC 61850-90-21:2022A is considered as "transitional" since the models are expected to be included in further editions IEC 61850-7-4xx. Potential extensions/modifications may happen if/when the models are moved to the International Standard status.			

Table 2 – Attributes of (Tr)IEC 61850-90-21:2022A namespace

1.5 Code Component distribution

Each Code Component is a ZIP package containing the electronic representation of the Code Component itself, with a file describing the content of the package (IECManifest.xml).

The life cycle of a code component is not restricted to the life cycle of the related publication. The publication life cycle goes through two stages, Version (corresponding to an edition) and Revision (corresponding to an amendment). A third publication stage (Release) allows publication of Code Component in case of urgent fixes of InterOp Tissues, thus without need to publish an amendment.

Consequently new release(s) of the Code Component may be released, which supersede(s) the previous release, and will be distributed through the IEC TC57 web site at: http://www.iec.ch/tc57/supportdocuments.

The code component associated to this TR is an nsd file. It is available as a full version and a light version. The light version is freely accessible on the IEC website for download at: http://www.iec.ch/tc57/supportdocuments, but the usage remains under the licensing conditions.

The latest version/release of the document will be found by selecting the file for the code component with the highest value for VersionStateInfo e.g. *IEC_TR_61850-90-21.NSD.{VersionStateInfo}.Light*

In case of any differences between the downloadable code component and the IEC pdf published content, the downloadable code component is the valid one; it may be subject to updates. See included history files.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes requirements of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

IEC TS 61850-2, Communication networks and systems for power utility automation – Part 2: Glossary

IEC 61850-7-2, Communication networks and systems for power utility automation – Part 7-2: Basic information and communication structure – Abstract communication service interface (ACSI)